Lesson 15

July 12, 2016

- 1. Plot the point given in rectangular coordinates by (3, 4, 10), then find the cylindrical coordinates for the point.
- 2. Plot the point given in cylindrical coordinates by $(5, \frac{5\pi}{6}, 4)$, then find the rectangular coordinates for the point.
- 3. Write the equation $3x^2 + y^2 = z$ in cylindrical coordinates.
- 4. Sketch the solid given by the inequalities $0 \le z \le 4 r$ and $\frac{\pi}{2} \le \theta \le \frac{3\pi}{2}$.
- 5. Evaluate $\int_{\frac{\pi}{2}}^{\pi} \int_{1}^{2} \int_{0}^{2-r} r \, dz \, dr \, d\theta$. What does this integral tell us?
- 6. Set up the following integrals using cylindrical or rectangular coordinates.
 - (a) $\int \int \int_E dV$, where E is the solid above the cone $z^2 = x^2 + y^2$ and below the sphere $x^2 + y^2 + z^2 = 8$
 - (b) $\int \int \int_E xy \, dV$, where E is the solid inside both the cylinder $x^2 + y^2 = 1$ and the sphere $x^2 + y^2 + z^2 = 4$
 - (c) $\int \int \int_E f(x, y, z) dV$, where E is the solid below x + y + 2z = 2 in the first octant
 - (d) $\int \int \int_E f(x, y, z) dV$, where E is the solid below $x^2 + y^2 + 2z = 2$ in the first octant
 - (e) $\int \int \int_E yz \, dV$, where E is the solid bounded above by z = x + y, below by the xy-plane, and by $y = x^2$ and $x = y^2$

Answers:

1. $(5, \tan^{-1}(\frac{4}{3}), 10)$

2.
$$\left(\frac{-5\sqrt{3}}{2}, \frac{5}{2}, 4\right)$$

3.
$$z = 3r^2 \cos^2 \theta + r^2 \sin^2 \theta$$
 or $z = 2r^2 \cos^2 \theta + r^2$

- 4. The part of a cone opening downward from (0, 0, 4) (rectangular coordinates) whose projection onto the *xy*-plane is the part of the circle $x^2 + y^2 = 2$ in the second and third quadrants.
- 5. $\frac{\pi}{3}$. This gives the volume of the part of the cone $z = 2 \sqrt{x^2 y^2}$ above the second quadrant, lying inside $x^2 + y^2 = 2$ and outside $x^2 + y^2 = 1$.

6. (a) cylindrical;
$$\int_{0}^{2\pi} \int_{r}^{\sqrt{8-r^{2}}} \int_{0}^{4} r \, dz \, dr \, d\theta$$

(b) cylindrical;
$$\int_{0}^{2\pi} \int_{0}^{1} \int_{-\sqrt{4-r^{2}}}^{\sqrt{4-r^{2}}} r^{3} \sin \theta \cos \theta \, dz \, dr \, d\theta$$

(c) rectangular;
$$\int_{0}^{2} \int_{0}^{2-x} \int_{0}^{1-0.5x-0.5y} f(x, y, z) \, dz \, dy \, dx$$

(d) cylindrical;
$$\int_{0}^{\frac{\pi}{2}} \int_{0}^{\sqrt{2}} \int_{0}^{1-0.5r^{2}} f(r \cos \theta, r \sin \theta, z) r \, dz \, dr \, d\theta$$

(e) rectangular;
$$\int_{0}^{1} \int_{x^{2}}^{\sqrt{x}} \int_{0}^{x+y} dz \, dy \, dx$$